torsdag 20 juni 2019

Cystatiini C hyödynnetään munuaistutkimuksissa , CST3( 20p11.21), ARMD11, HEL-S-2.

https://lakemedelsboken.se/kapitel/nefrologi-urologi/skattning-av-njurfunktion.html

Yleistä  http://oyslab.fi/ohjekirja/1887.html

Sitaatti:  "Kystatiini C on emäksinen pienimolekyylinen (mp 13 000) proteiini, jonka fysiologisena tehtävänä on inhiboida kysteiiniproteaaseja. Kaikki elimistön tumalliset solut tuottavat kystatiini C:tä tasaisella nopeudella, se ei ole akuutin faasin proteiini, eivätkä lihasmassa, sukupuoli ja ravinto vaikuta sen seerumi/plasmapitoisuuteen. Kystatiini C eliminoituu lähes täysin glomerulussuodokseen, josta proksimaalisen tubuluksen solut sen reabsorboivat ja hajottavat. Kystatiini C:n ominaisuudet tekevät siitä kreatiniinia paremman glomerulusfunktion merkkiaineen".

Kystatiini C- geeni (PubMed haku 20.6. 2019)

https://www.ncbi.nlm.nih.gov/gene/1471
Official Symbol
CST3
Official Full Name
cystatin C
Also known as
ARMD11; HEL-S-2
Summary
The cystatin superfamily encompasses proteins that contain multiple cystatin-like sequences. Some of the members are active cysteine protease inhibitors, while others have lost or perhaps never acquired this inhibitory activity. There are three inhibitory families in the superfamily, including
  •  the type 1 cystatins (stefins),
  •  type 2 cystatins
  •  the kininogens. 
The type 2 cystatin proteins are a class of cysteine proteinase inhibitors found in a variety of human fluids and secretions, where they appear to provide protective functions. The cystatin locus on chromosome 20 contains the majority of the type 2 cystatin genes and pseudogenes. This gene is located in the cystatin locus and encodes the most abundant extracellular inhibitor of cysteine proteases, which is found in high concentrations in biological fluids and is expressed in virtually all organs of the body. A mutation in this gene has been associated with amyloid angiopathy. 
 Expression of this protein in vascular wall smooth muscle cells is severely reduced in both atherosclerotic and aneurysmal aortic lesions, establishing its role in vascular disease. In addition, this protein has been shown to have an antimicrobial function, inhibiting the replication of herpes simplex virus. Alternative splicing results in multiple transcript variants encoding a single protein. [provided by RefSeq, Nov 2014]
Expression
Ubiquitous expression in brain (RPKM 148.6), salivary gland (RPKM 118.0) and 25 other tissues See more
Orthologs mouse all
Preferred Names
cystatin-C
Names
bA218C14.4 (cystatin C)
cystatin 3
epididymis secretory protein Li 2    (HEL-S-2)
gamma-trace
neuroendocrine basic polypeptide
post-gamma-globulin
Conserved Domains (1) summary
smart00043
Location:34144
CY; Cystatin-like domain. Cystatins are a family of cysteine protease inhibitors that occur mainly as single domain proteins. However some extracellular proteins such as kininogen, His-rich glycoprotein and fetuin also contain these domains.
FEATURES             Location/Qualifiers
     source          1..146
                     /organism="Homo sapiens"
                     /db_xref="taxon:9606"
                     /chromosome="20"
                     /map="20p11.21"
     Protein         1..146
                     /product="cystatin-C precursor"
                     /note="cystatin 3; gamma-trace; post-gamma-globulin;
                     neuroendocrine basic polypeptide; bA218C14.4 (cystatin C);
                     epididymis secretory protein Li 2"
                     /calculated_mol_wt=13347
     sig_peptide     1..26
                     /calculated_mol_wt=2470
     mat_peptide     27..146
                     /product="cystatin-C"
                     /experiment="DESCRIPTION:antimicrobial
                     peptide[PMID:2153254]"
                     /calculated_mol_wt=13347
     Region          34..144
                     /region_name="CY"
                     /note="Cystatin-like domain; smart00043"
                     /db_xref="CDD:214484"
     Site            order(37,81..83,85)
                     /site_type="other"
                     /note="putative proteinase inhibition site"
                     /db_xref="CDD:238002"
     CDS             1..146
                     /gene="CST3"
                     /gene_synonym="ARMD11; HEL-S-2"
                     /coded_by="NM_000099.4:94..534"
                     /db_xref="CCDS:CCDS13158.1"
                     /db_xref="GeneID:1471"
                     /db_xref="HGNC:HGNC:2475"
                     /db_xref="MIM:604312"
ORIGIN      
        1 magplrapll llailavala vspaagsspg kpprlvggpm dasveeegvr raldfavgey
       61 nkasndmyhs ralqvvrark qivagvnyfl dvelgrttct ktqpnldncp fhdqphlkrk
      121 afcsfqiyav pwqgtmtlsk stcqda
//
Related articles in PubMed

GeneRIFs: Gene References Into FunctionsWhat's a GeneRIF?

 
  • Metalloproteinaasien  ADAM10/ADAM17 degradomi hajoittaa C-cystiinin:
2019 Jun 17. doi: 10.1007/s00018-019-03184-4. [Epub ahead of print]
Degradome of soluble ADAM10 and ADAM17 metalloproteases.
Scharfenberg F1, Helbig A2et al. Abstract
Disintegrin and metalloproteinases (ADAMs) 10 and 17 can release the extracellular part of a variety of membrane-bound proteins via ectodomain shedding important for many biological functions. So far, substrate identification focused exclusively on membrane-anchored ADAM10 and ADAM17. However, besides known shedding of ADAM10, we identified ADAM8 as a protease capable of releasing the ADAM17 ectodomain. Therefore, we investigated whether the soluble ectodomains of ADAM10/17 (sADAM10/17) exhibit an altered substrate spectrum compared to their membrane-bound counterparts. A mass spectrometry-based N-terminomics approach identified 134 protein cleavage events in total and 45 common substrates for sADAM10/17 within the secretome of murine cardiomyocytes. Analysis of these cleavage sites confirmed previously identified amino acid preferences. Further in vitro studies verified fibronectin, cystatin C, sN-cadherin, PCPE-1 as well as sAPP as direct substrates of sADAM10 and/or sADAM17. Overall, we present the first degradome study for sADAM10/17, thereby introducing a new mode of proteolytic activity within the protease web. KEYWORDS:
ADAM10; ADAM17; ADAM8; Ectodomain shedding; Proteolysis; TAILS
 
 

onsdag 19 juni 2019

Haku " rhodanese" Thiosulphate sulfurtransferase. Paljon uutisia. 2019

https://www.ncbi.nlm.nih.gov/pubmed/?term=rhodanese
 Search results Items: 1 to 20 of 1062

1.
Bełtowski J.
Methods Mol Biol. 2019;2007:1-8. doi: 10.1007/978-1-4939-9528-8_1.
In addition to nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2S) has recently emerged as the novel gasotransmitter involved in the regulation of the nervous system, cardiovascular functions, inflammatory response, gastrointestinal system, and renal function. H2S is synthesized from L-cysteine and/or L-homocysteine by cystathionine β-synthase, cystathionine γ-lyase, and cysteine aminotransferase together with 3-mercaptopyruvate sulfurtransferase. In addition, H2S is enzymatically metabolized in mitochondria by sulfide:quinone oxidoreductase, persulfide dioxygenase, and sulfite oxidase to thiosulfate, sulfite, and sulfate which enables to regulate its level by factors such as oxygen pressure, mitochondria density, or efficacy of mitochondrial electron transport.
 H2S modifies protein structure and function through the so-called sulfuration or persulfidation, that is, conversion of cysteine thiol (-SH) to persulfide (-SSH) groups. This, as well as other signaling mechanisms, is partially mediated by more oxidized H2S-derived species, polysulfides (H2Sn). In addition, H2S is able to react with reactive oxygen and nitrogen species to form other signaling molecules such as thionitrous acid (HSNO), nitrosopersulfide (SSNO-), and nitroxyl (HNO). All H2S-synthesizing enzymes are expressed in the vascular wall, and H2S has been demonstrated to regulate vascular tone, endothelial barrier permeability, angiogenesis, vascular smooth muscle cell proliferation and apoptosis, and inflammatory reaction. H2S-modifying therapies are promising approach for diseases such as arterial hypertension, diabetic angiopathy, and atherosclerosis.
PMID:
31148102
2.
Hepowit NL, Maupin-Furlow JA.
J Bacteriol. 2019 May 13. pii: JB.00254-19. doi: 10.1128/JB.00254-19. [Epub ahead of print]
PMID:
31085691
3.
Selles B, Moseler A, Rouhier N, Couturier J.
J Exp Bot. 2019 May 4. pii: erz213. doi: 10.1093/jxb/erz213. [Epub ahead of print]
PMID:
31055601
4.
Nagahara N, Tanaka M, Tanaka Y, Ito T.
Antioxidants (Basel). 2019 May 1;8(5). pii: E116. doi: 10.3390/antiox8050116.
5.
Moseler A, Selles B, Rouhier N, Couturier J.
New Phytol. 2019 Apr 29. doi: 10.1111/nph.15870. [Epub ahead of print]
PMID:
31032955
6.
Sharma M, Akhter Y, Chatterjee S.
World J Microbiol Biotechnol. 2019 Apr 22;35(5):70. doi: 10.1007/s11274-019-2643-8. Review.
PMID:
31011828
7.
Li H, Liu H, Chen Z, Zhao R, Wang Q, Ran M, Xia Y, Hu X, Liu J, Xian M, Xun L.
Redox Biol. 2019 Jun;24:101179. doi: 10.1016/j.redox.2019.101179. Epub 2019 Mar 26.
8.
Suman SG, Gretarsdottir JM.
Met Ions Life Sci. 2019 Jan 14;19. pii: /books/9783110527872/9783110527872-020/9783110527872-020.xml. doi: 10.1515/9783110527872-020.
PMID:
30855115
9.
Tang T, Sun H, Li Y, Chen P, Liu F.
Mol Immunol. 2019 Mar;107:115-122. doi: 10.1016/j.molimm.2019.01.016. Epub 2019 Feb 1.
PMID:
30716562
10.
Wells M, McGarry J, Gaye MM, Basu P, Oremland RS, Stolz JF.
J Bacteriol. 2019 Mar 13;201(7). pii: e00614-18. doi: 10.1128/JB.00614-18. Print 2019 Apr 1.
PMID:
30642986
11.
Fránová J, Koloniuk I, Lenz O, Sakalieva D.
Folia Microbiol (Praha). 2019 May;64(3):373-382. doi: 10.1007/s12223-018-0660-x. Epub 2018 Oct 30.
PMID:
30377990
12.
Florentino AP, Pereira IAC, Boeren S, van den Born M, Stams AJM, Sánchez-Andrea I.
Environ Microbiol. 2019 Jan;21(1):209-225. doi: 10.1111/1462-2920.14442. Epub 2018 Nov 15.
13.
Chen Z, Zhang X, Li H, Liu H, Xia Y, Xun L.
Appl Environ Microbiol. 2018 Oct 30;84(22). pii: e01241-18. doi: 10.1128/AEM.01241-18. Print 2018 Nov 15.
14.
Lee J, Rockwood G, Logue B, Manandhar E, Petrikovics I, Han C, Bebarta V, Mahon SB, Burney T, Brenner M.
J Med Toxicol. 2018 Dec;14(4):295-305. doi: 10.1007/s13181-018-0680-6. Epub 2018 Aug 9. Erratum in: J Med Toxicol. 2019 Jan 3;:.
PMID:
30094773
15.
Kawano Y, Suzuki K, Ohtsu I.
Appl Microbiol Biotechnol. 2018 Oct;102(19):8203-8211. doi: 10.1007/s00253-018-9246-4. Epub 2018 Jul 26. Review.
PMID:
30046857
16.
Steiner AM, Busching C, Vogel H, Wittstock U.
Sci Rep. 2018 Jul 17;8(1):10819. doi: 10.1038/s41598-018-29148-5.
17.
Zhu L, Yang Z, Yao R, Xu L, Chen H, Gu X, Wu T, Yang X.
mSphere. 2018 Jun 13;3(3). pii: e00229-18. doi: 10.1128/mSphere.00229-18. Print 2018 Jun 27.
18.
Jaswal V, Palanivelu J, C R.
Biochem Biophys Rep. 2018 May 3;14:125-132. doi: 10.1016/j.bbrep.2018.04.008. eCollection 2018 Jul. Review.
19.
Zagrobelny M, de Castro ÉCP, Møller BL, Bak S.
Insects. 2018 May 3;9(2). pii: E51. doi: 10.3390/insects9020051. Review.
20.
Nucleic Acids Res. 2018 Jun 1;46(10):5171-5181. doi: 10.1093/nar/gky312.
2018 Jun 1;46(10):5171-5181. doi: 10.1093/nar/gky312.
Eukaryotic ubiquitin-like proteins (UBLs) have evolved from prokaryotic sulfur-carrier proteins (SCPs). Ubiquitin related modifier 1 (Urm1) shares biochemical and structural features of UBLs and SCPs and is essential for 2-thiolation of cytoplasmic tRNA.

 This chemical modification of wobble uridine is highly conserved amongst species and is achieved via Urm1 thiocarboxylation by the non-canonical ubiquitin activating 4 enzyme (Uba4), which contains an E1- and a Rhodanese (RHD) domain. While the RHD catalyzes the last step in Urm1-thiocarboxylate formation, the previous steps in Urm1 activation and the interplay between the two domains have remained elusive. To define the underlying mechanism, we established an Urm1 in vitro thiocarboxylation assay, which combined with structure-function and chemical profiling analyses revealed a critical thioester linkage between Urm1 and Uba4 residue Cys225. This linkage is indispensable for the Urm1 intramolecular transfer between the two domains of Uba4 and it is thus, essential for tRNA thiolation in vivo
. These findings contribute to a deeper understanding of UBL evolution.
PMID:
29718331
PMCID:
PMC6007339
DOI:
10.1093/nar/gky312



Rodaneesi entsyymi on tiosulfaattisulfotransferaasi

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/rhodanese

L-cysteiiniä proteiinisynteesiin eikä D-cysteiiniä

https://www.ncbi.nlm.nih.gov/pubmed/9609386

1998 Apr 3;110(3):189-202.
The glutathione dependence of inorganic sulfate formation from L- or D-cysteine in isolated rat hepatocytes.
Huang J1, Khan S, O'Brien PJ.Erratum in Chem Biol Interact 1998 Jul 3;114(1-2):141.

Abstract

The GSH dependence of the metabolic pathways involved in the conversion of cysteine to sulfate in intact cells has been investigated. It was found that hepatocyte-catalysed sulfate formation from added L-cysteine did not occur if hepatocyte GSH was depleted beforehand, but was restored when GSH levels recovered.

Furthermore, sulfate formation did not recover in GSH-depleted hepatocytes if GSH synthesis was prevented with buthionine sulfoximine.

Thiosulfate formation was, however, markedly enhanced in GSH-depleted hepatocytes.

 These results suggest that thiosulfate is an intermediate in the formation of inorganic sulfate from L-cysteine and that GSH was required for the conversion of thiosulfate to inorganic sulfate.

 Much less sulfate was formed if the cysteine (Cys)  was replaced with cysteinesulfinate (CSA) 

Furthermore, sulfate formation from L-cysteine was markedly inhibited by the addition of the transaminase inhibitor DL-cycloserine or the gamma-cystathionase inhibitor DL-propargylglycine.

The major routes of sulfate formation from L-cysteine therefore seems to involve pathways that do not involve L-cysteinesulfinate.

Similar amounts of sulfate were formed from D-cysteine as L-cysteine.

 Thiosulfate instead of sulfate was also formed in GSH-depleted hepatocytes.

 However, sulfate formation from D-cysteine differed from L-cysteine in that it was inhibited by the D-aminoacid oxidase inhibitor sodium benzoate and was not affected by transaminase or gamma-cystathionase inhibitors.

 These results suggest that thiosulfate is an intermediate in sulfate formation from D-cysteine and involves the oxidation of D-cysteine by D-amino acid oxidase to form beta-mercaptopyruvate.
PMID:
9609386
[Indexed for MEDLINE]

H2S merkityksestä mm. sirtuiinien signalointitiessä

https://www.ncbi.nlm.nih.gov/pubmed/30274149

2018 Sep 28;7(10). pii: E129. doi: 10.3390/antiox7100129.

Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent Maintenance of Cellular Redox Balance. Corsello T1, Komaravelli N2, Casola A3,4.

Vetysulfidista (H2S)  on tullut kriittinen gasatransmitteri signaloiva molekyyli, joka moduloi solun biologisia tapahtumia, joilla  niillä on merkityst sydämen, aivojen, maksan, verisuoniston  taudeissa ja immuunivasteissa.

  • Abstract Hydrogen sulfide (H₂S) has arisen as a critical gasotransmitter signaling molecule modulating cellular biological events related to health and diseases in heart, brain, liver, vascular systems and immune response.

 Vetysulfidin endogeenista tuotantoa välittää kolme entsyymiä:
Cystationin beetasyntaasi (CBS),
cystationin  gamma-lyaasi (GSE) ja
3-merkapto-palorypälehapon sulfustransferaasi (3-MST).
Näistä entsyymit CBS ja CSE sijoittuvat orgaanispesifissti.  Entsyymi 3-MST on mitokondriaalinen ja sytosolinen entsyymi. 
  • Three enzymes mediate the endogenous production of H₂S:
  •  cystathione β-synthase (CBS),
  •  cystathione γ-lyase (CSE) and
  •  3-mercaptopyruvate sulfurtransferase (3-MST).
  • CBS and CSE localizations are organ-specific.
  •  3-MST is a mitochondrial and cytosolic enzyme.
 Vetysulfidin (H2S)  generoituminen on näiden entsyymien vahvasti  säätelemä normaalifysiologiassa. Tuoreet tutkimukset ovat valaisseet H2S;n osuutta solun redox-homeostaasissa, koska sillä on merkittäviä antioksidanttisia ominaisuuksia. H2S  vaikuttaa antioksidanttisesti  useilla mekanismeilla, kuten sammuttamalla reaktiivisia happilajeja (ROS)  ja reaktiivisia typpilajeja (RNS) moduloimalla solun GSH- ja tioredoxiinipitoisuuksia tai  vaikuttamalla antioksidanttientsyymien (AOE) lisääntynyttä  ilmentymistä, kun se aktivoi  transkriptionaalisen tumatekijän  NRF2

  • The generation of H₂S is firmly regulated by these enzymes under normal physiological conditions. Recent studies have highlighted the role of H₂S in cellular redox homeostasis, as it displays significant antioxidant properties. H₂S exerts antioxidant effects through several mechanisms, such as quenching reactive oxygen species (ROS) and reactive nitrogen species (RNS), by modulating cellular levels of glutathione (GSH) and thioredoxin (Trx-1) or increasing expression of antioxidant enzymes (AOE), by activating the transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2).
H2S vaikuttaa myös  sirtuiinien aktiivisuuteen histonideasetylaaseina ja tällä taas on  tärkeää osuutta oksidatiivisen stressin estossa   moduloimassa antioksidanttigeenien ilmentymistä  sydänlihassoluissa ja ikääntymisprosessin aikana  Tämä katsaus keskiittyykin  vetysulfidin (H2S)  osuuteen  transkriptiofaktorin NRF2  vaikutuspiirissä  ja sirtuiinien signaaliteissä , koska ne liittyvät solun redox-tasapainoon.
  •  H₂S also influences the activity of the histone deacetylase protein family of sirtuins, which plays an important role in inhibiting oxidative stress in cardiomyocytes and during the aging process by modulating AOE gene expression. This review focuses on the role of H₂S in NRF2 and sirtuin signaling pathways as they are related to cellular redox homeostasis.

KEYWORDS: NRF2; hydrogen sulfide; oxidative stress; redox; sirtuin

(1) Cysteiiniaminohaposta kohti tauriinin tai sulfaatin muodostusta cys-dioxygenaasilla CDO1, joka tekee cysteiinisulfiinihappoa.

 Entsyymi cysteiinidioxygenaasi CDO1  (5q22.3)  on primäärinen cysteiiniä metaboloiva entsyymi ja tuote on  kysteiinisulfiinihappoa CSAD.

   (Tämä  CDO1 entsyymi on säätelyllinen alkukohta  sulfaatin  muodostuksessa. Sulfaattia tarvitaan detoksikaatiojärjestelmään ja  erilaisten rikkiä sisältävien kehomolekyylien luomiseen. Sulfotransferaaseja  ja arylsulfataasientsyymejä taas  avustaa kofaktorina k-vitamiini ja B6 vitamiini)

 CDO1  Cystein dioxygenase 1
https://www.ncbi.nlm.nih.gov/gene/1036
Official Symbol CDO1
Official Full Name cysteine dioxygenase type 1provided by HGNC
Also known as CDO-I
Expression Biased expression in liver (RPKM 94.6), fat (RPKM 66.8) and 8 other tissues See more
Orthologs mouse all

GeneRIFs: Gene References Into Functions

LOCUS       NP_001310494             219 aa            linear   PRI 01-JUN-2019
DEFINITION  cysteine dioxygenase type 1 isoform 1 [Homo sapiens].
ACCESSION   NP_001310494
VERSION     NP_001310494.1
DBSOURCE    REFSEQ: accession NM_001323565.2
KEYWORDS    RefSeq.
SOURCE      Homo sapiens (human)
  ORGANISM  Homo sapiens
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
            Catarrhini; Hominidae; Homo.
REFERENCE   1  (residues 1 to 219)
  AUTHORS   Tanaka Y, Kosaka Y, Waraya M, Yokota K, Harada H, Kaida T, Kikuchi
            M, Minatani N, Nishimiya H, Katoh H, Sengoku N, Watanabe M and
            Yamashita K.
  TITLE     Differential Prognostic Relevance of Promoter DNA Methylation of
            CDO1 and HOPX in Primary Breast Cancer
  JOURNAL   Anticancer Res. 39 (5), 2289-2298 (2019)
   PUBMED   31092420
  REMARK    GeneRIF: In the present study, we compared the 2 potential
            epigenetic prognostic markers of CDO1 hypermethylation and HOPX
            hypermethylation using the same breast cancer samples, and the
            final focus was given on CDO1 hypermethylation
REFERENCE   2  (residues 1 to 219)
  AUTHORS   Yokoi K, Harada H, Yokota K, Ishii S, Tanaka T, Nishizawa N,
            Shimazu M, Kojo K, Miura H, Yamanashi T, Sato T, Nakamura T,
            Watanabe M and Yamashita K.
  TITLE     Epigenetic Status of CDO1 Gene May Reflect Chemosensitivity in
            Colon Cancer with Postoperative Adjuvant Chemotherapy
  JOURNAL   Ann. Surg. Oncol. 26 (2), 406-414 (2019)
   PUBMED   30311169
  REMARK    GeneRIF: High expression of CDO1 gene increased chemoresistance in
            Colon Cancer.
REFERENCE   3  (residues 1 to 219)
  AUTHORS   Nakamoto S, Kumamoto Y, Igarashi K, Fujiyama Y, Nishizawa N, Ei S,
            Tajima H, Kaizu T, Watanabe M and Yamashita K.
  TITLE     Methylated promoter DNA of CDO1 gene and preoperative serum CA19-9
            are prognostic biomarkers in primary extrahepatic
            cholangiocarcinoma
  JOURNAL   PLoS ONE 13 (10), e0205864 (2018)
   PUBMED   30325974
  REMARK    GeneRIF: CDO1 hypermethylation, preoperative serum CA19-9 and
            perineural invasion were independent prognostic factors in primary
            extrahepatic cholangiocarcinoma
            Publication Status: Online-Only
REFERENCE   4  (residues 1 to 219)
  AUTHORS   Kojima K, Nakamura T, Ohbu M, Katoh H, Ooizumi Y, Igarashi K, Ishii
            S, Tanaka T, Yokoi K, Nishizawa N, Yokota K, Kosaka Y, Sato T,
            Watanabe M and Yamashita K.
  TITLE     Cysteine dioxygenase type 1 (CDO1) gene promoter methylation during
            the adenoma-carcinoma sequence in colorectal cancer
  JOURNAL   PLoS ONE 13 (5), e0194785 (2018)
   PUBMED   29746493
  REMARK    GeneRIF: High CDO1 methylation is associated with colorectal cancer
            progression.
            Publication Status: Online-Only
REFERENCE   5  (residues 1 to 219)
  AUTHORS   Igarashi K, Yamashita K, Katoh H, Kojima K, Ooizumi Y, Nishizawa N,
            Nishiyama R, Kawamata H, Tajima H, Kaizu T, Kumamoto Y and Watanabe
            M.
  TITLE     Prognostic significance of promoter DNA hypermethylation of the
            cysteine dioxygenase 1 (CDO1) gene in primary gallbladder cancer
            and gallbladder disease
  JOURNAL   PLoS ONE 12 (11), e0188178 (2017)
   PUBMED   29161283
  REMARK    GeneRIF: Promoter NA methylation of CDO1 was demonstrated for the
            first time to be a cancer-associated methylation in primary
            gallbladder cancer(GBC), and it has the potential to be a
            prognostic biomarker of GBC for high-risk patients with stage II
            GBC.
            Publication Status: Online-Only
REFERENCE   6  (residues 1 to 219)
  AUTHORS   Harrington JJ, Sherf B, Rundlett S, Jackson PD, Perry R, Cain S,
            Leventhal C, Thornton M, Ramachandran R, Whittington J, Lerner L,
            Costanzo D, McElligott K, Boozer S, Mays R, Smith E, Veloso N,
            Klika A, Hess J, Cothren K, Lo K, Offenbacher J, Danzig J and Ducar
            M.
  TITLE     Creation of genome-wide protein expression libraries using random
            activation of gene expression
  JOURNAL   Nat. Biotechnol. 19 (5), 440-445 (2001)
   PUBMED   11329013
REFERENCE   7  (residues 1 to 219)
  AUTHORS   Qusti S, Parsons RB, Abouglila KD, Waring RH, Williams AC and
            Ramsden DB.
  TITLE     Development of an in vitro model for cysteine dioxygenase
            expression in the brain
  JOURNAL   Cell Biol. Toxicol. 16 (4), 243-255 (2000)
   PUBMED   11101006  The development of an in vitro model for cysteine dioxygenase (CDO) 
expression in the brain would provide a useful model for determining the
 mechanisms for the regulation of CDO expression that does not involve 
the use of animals. Here we demonstrate the screening and 
characterization of a cell line that expresses CDO, the primary 
metabolizing enzyme of cysteine and the regulatory point of sulfate 
production. A panel of four commercially available tumor-derived human 
brain cell lines, each representing one major class of brain cell, were 
screened using western blotting and activity assay for cysteine 
dioxygenase expression. One cell line, TE 671 (human medulloblastoma) 
was found to express both a protein of approximately 70 kDa and CDO 
activity. Nuclease protection assay (NPA) of mRNA isolated from TE 671 
showed the expression of a CDO mRNA. Reverse transcription-polymerase 
chain reaction of this mRNA and sequencing of the cDNA obtained showed 
that this was indeed CDO. Treatment of TE 671 cells with cysteine 
resulted in the upregulation of CDO mRNA, whereas treatment with tumor 
necrosis factor alpha resulted in the downregulation of CDO mRNA, as 
evidenced using NPA. The characterization of an in vitro model for CDO 
expression provides a useful tool for the investigation of this 
important enzyme, which may have an etiological role in the pathogenesis
 of Parkinson's disease.
REFERENCE   8  (residues 1 to 219)
  AUTHORS   Ramsden DB, Kapadi A, Fitch NJ, Farmer MJ, Bennett P and Williams
            AC.
  TITLE     Human cysteine dioxygenase type I (CDO-I; EC 1.13.11.20): 5'
            flanking region and intron-exon structure of the gene
  JOURNAL   MP, Mol. Pathol. 50 (5), 269-271 (1997)
   PUBMED   9497919
REFERENCE   9  (residues 1 to 219)
  AUTHORS   Jeremiah S, McCann KP, Williams AC, Ramsden DB, Pilz AJ, Fox MF and
            Povey S.
  TITLE     Chromosomal localisation of genes coding for human and mouse liver
            cytosolic cysteine dioxygenase
  JOURNAL   Ann. Hum. Genet. 60 (1), 29-33 (1996)
   PUBMED   8835096
REFERENCE   10 (residues 1 to 219)
  AUTHORS   McCann KP, Akbari MT, Williams AC and Ramsden DB.
  TITLE     Human cysteine dioxygenase type I: primary structure derived from
            base sequencing of cDNA
  JOURNAL   Biochim. Biophys. Acta 1209 (1), 107-110 (1994)
   PUBMED   7524679
COMMENT     VALIDATED REFSEQ: This record has undergone validation or
            preliminary review. The reference sequence was derived from
            AC026449.6, DA849625.1, AK130357.1 and BC024241.2.
            
            Publication Note:  This RefSeq record includes a subset of the
            publications that are available for this gene. Please see the Gene
            record to access additional publications.
            
            ##Evidence-Data-START##
            Transcript exon combination :: SRR5189664.60540.1,
                                           SRR1803613.237389.1 [ECO:0000332]
            RNAseq introns              :: single sample supports all introns
                                           SAMEA2467146, SAMEA2467147
                                           [ECO:0000348]
            ##Evidence-Data-END##
FEATURES             Location/Qualifiers
     source          1..219
                     /organism="Homo sapiens"
                     /db_xref="taxon:9606"
                     /chromosome="5"
                     /map="5q22.3"
     Protein         1..219
                     /product="cysteine dioxygenase type 1 isoform 1"
                     /EC_number="1.13.11.20"
                     /note="cysteine dioxygenase, type I"
                     /calculated_mol_wt=24700
     CDS             1..219
                     /gene="CDO1"
                     /gene_synonym="CDO-I"
                     /coded_by="NM_001323565.2:263..922"
                     /note="isoform 1 is encoded by transcript variant 1"
                     /db_xref="GeneID:1036"
                     /db_xref="HGNC:HGNC:1795"
                     /db_xref="MIM:603943"
ORIGIN      
        1 meqtevlkpr tladlirilh qlfagdevnv eevqaimeay esdptewamy akfdqysrgr
       61 glqfvvgggs gggwlwytrn lvdqgngkfn lmilcwgegh gssihdhtns hcflkmlqgn
      121 lketlfawpd kksnemvkks ervlrenqca yindsiglhr venishtepa vslhlysppf
      181 dtchafdqrt ghknkvtmtf hskfgirtpn atsgslenn
//
Seuraaksi CSAD- molekyylistä cysteinsulphinic acid , kysteiinisulfiinihappo.

tisdag 18 juni 2019

Hyvin metioniinipitoinen dieetti

 Näissä listoissa metioniinipitoisista ruoista  eistetään asia lähinnä proteiinipitoisuuden kohttomaistarkoituksessa, muta samasta tiedosta voi  myös käsittää, minkälaisisen proteiinien  nauttimisessa tulee tavoitella kohtuullisuutta, että metioniinirasite ei tule liian suureksipainokiloa kohden, sillä aineenvaihdunnassa muodostuu  sitten  kertymåä Hcy:stä, joka voi päästä hakoteille kertymisvaiheestaan.

https://www.myfooddata.com/articles/high-methionine-foods.php

  High methionine foods include
 nuts,
 beef,
lamb,
 cheese,
turkey,
 pork,
 fish,
 shellfish,
soy,
 eggs,
dairy, and
beans.
 https://www.myfooddata.com/articles/high-methionine-foods.php#methionine-rich-foods

Hcy tiolaktoni ja kardiovaskulaarinen tauti

https://www.ncbi.nlm.nih.gov/pubmed/19261978

2008 Dec;59 Suppl 9:155-67.
The pathophysiological hypothesis of homocysteine thiolactone-mediated vascular disease.

Abstract



Accumulating evidence suggests that homocysteine (Hcy) metabolite, the thioester Hcy-thiolactone, plays an important role in atherothrombosis. Hcy-thiolactone is a product of an error-editing reaction in protein biosynthesis which forms when Hcy is mistakenly selected by methionyl-tRNA synthetase.
The thioester chemistry of Hcy-thiolactone underlies its ability to from isopeptide bonds with protein lysine residues, which impairs or alters protein's function. Protein targets for the modification by Hcy-thiolactone include fibrinogen, low-density lipoprotein, high-density lipoprotein, albumin, hemoglobin, and ferritin.

Pathophysiological consequences of protein N-homocysteinylation include protein and cell damage, activation of an adaptive immune response and synthesis of auto-antibodies against N-Hcy-proteins, and enhanced thrombosis caused by N-Hcy-fibrinogen. Recent development of highly sensitive chemical and immunohistochemical assays has allowed verification of the hypothesis that the Hcy-thiolactone pathway contributes to pathophysiology of the vascular system, in particular of the prediction that conditions predisposing to atherosclerosis, such as genetic or dietary hyperhomocysteinemia, lead to elevation of Hcy-thiolactone and N-Hcy-protein. This prediction has been confirmed in vivo both in humans and in mice. For example, plasma Hcy-thiolactone was found to be elevated 59-72-fold in human patients with hyperhomocysteinemia ( HHcy) secondary to mutations in methylenetetrahydrofolate reductase (MTHFR) or cystathionine beta-synthase (CBS) genes.

 Plasma N-Hcy-protein levels are elevated 24-30-fold in MTHFR- or CBS-deficiency, both in human patients and in mice.
 Plasma and urinary Hcy-thiolactone and plasma N-Hcy-protein levels are also elevated up to 30-fold in mice fed a hyperhomocysteinemic (1.5% methionine) diet.

 Furthermore, plasma levels of prothromobogenic N-Hcy-fibrinogen were elevated in human CBS deficiency, which explains increased atherothrombosis observed in CBS-deficient patients. We also observed increased immunohistochemical staining for N-Hcy-protein in aortic lesions from ApoE-deficient mice with hyperhomocysteinemia induced by a high methionine diet, relative to the mice fed a normal chow diet. We conclude that genetic or dietary hyperhomocysteinemia significantly elevates proatherothrombotic metabolites Hcy-thiolactone and N-Hcy-proteins in humans and mice.
PMID:
19261978

Tauriinin synteesin tärkeä entsyymi CSAD,cysteinisulfiinihappodekarboksylaasi on B6-vitamiinsita riippuvainen

cysteinesulfinic acid decarboxylase

 https://www.ncbi.nlm.nih.gov/pubmed/30131986


2018 Sep 19;9(9):4814-4821. doi: 10.1039/c8fo00740c.
The intervention effect of licorice in d-galactose induced aging rats by regulating the taurine metabolic pathway.

Abstract

Licorice, an edible and officinal plant material, has attracted considerable attention for its wide range of pharmacological activities. Our previous study showed that licorice can ameliorate cognitive damage and improve oxidative stress and apoptosis in aging rats induced by d-galactose (d-gal). In this study, in order to further explore the changes of the metabolic profile during the aging process and the antiaging mechanism of licorice, the 1H NMR-based metabolomics approach was used to analyze serum and urine samples and identify a potential biomarker in d-gal induced aging rats.

 The results revealed that the taurine metabolic pathway was significantly correlated with the ageing process in d-gal induced rats. Furthermore, the taurine contents were significantly decreased in both the serum and urine samples of aging rats compared with the controls. At the same time, the levels of
  •  cysteine dioxygenase type I (CDO1), 
  • cysteine sulfinic acid decarboxylase (CSAD) and
  •  glutamate decarboxylase type I (GAD1), 
which are the key enzymes affecting the synthesis reactions, were decreased in aging rats compared with the controls.
After licorice administration, the levels of taurine, CDO1 and CSAD were all significantly increased. These findings firstly demonstrated that the regulation of the taurine metabolic pathway is involved in the anti-aging effect of licorice in d-gal induced aging rats.
PMID: 30131986 DOI: 10.1039/c8fo00740c
[Indexed for MEDLINE]
Official Symbol CSAD
Official Full Name cysteine sulfinic acid decarboxylase 
 Gene type protein coding 
Also known as CSD; PCAP
 Summary: This gene encodes a member of the group 2 decarboxylase family. A similar protein in rodents plays a role in multiple biological processes as the rate-limiting enzyme in taurine biosynthesis, catalyzing the decarboxylation of cysteinesulfinate to hypotaurine. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Sep 2011] Expression Ubiquitous expression in fat (RPKM 9.9), skin (RPKM 8.5) and 25 other tissues See more Orthologs mouse all
Preferred Names
cysteine sulfinic acid decarboxylase (CSAD)
Names
P-selectin cytoplasmic tail-associated protein (PCAP)
aspartate 1-decarboxylase  (ADC)
cysteine sulfinic acid decarboxylase-related protein
cysteine-sulfinate decarboxylase
sulfinoalanine decarboxylase
Conserved Domains (1) summary
cd06450
Location:89489
DOPA_deC_like; DOPA decarboxylase family. This family belongs to pyridoxal phosphate (PLP)-dependent aspartate aminotransferase superfamily (fold I). The major groups in this CD correspond to DOPA/tyrosine decarboxylase (DDC), histidine decarboxylase (HDC), and


Related articles in PubMed
https://www.ncbi.nlm.nih.gov/pubmed/26327310
Abstract
Variants in the gene encoding the enzyme glutamic acid decarboxylase like 1 (GADL1) have been associated with response to lithium therapy. Both GADL1 and the related enzyme cysteine sulfinic acid decarboxylase (CSAD) have been proposed to be involved in the pyridoxal-5'-phosphate (PLP)-dependent biosynthesis of taurine.
 In the present study, we compared the catalytic properties, inhibitor sensitivity and expression profiles of GADL1 and CSAD in brain tissue.
 In mouse and human brain we observed distinct patterns of expression of the PLP-dependent decarboxylases CSAD, GADL1 and glutamic acid decarboxylase 67 (GAD67).
CSAD levels were highest during prenatal and early postnatal development;
 GADL1 peaked early in prenatal development,
 while GAD67 increased rapidly after birth.
Both CSAD and GADL1 are being expressed in neurons,
 whereas only CSAD mRNA was detected in astrocytes.
 Cysteine sulfinic acid was the preferred substrate for both mouse CSAD and GADL1, although both enzymes also decarboxylated cysteic acid and aspartate. In silico screening and molecular docking using the crystal structure of CSAD and in vitro assays led to the discovery of eight new enzyme inhibitors with partial selectivity for either CSAD or GADL1. Lithium had minimal effect on their enzyme activities.
 In conclusion, taurine biosynthesis in vertebrates involves two structurally related PLP-dependent decarboxylases (CSAD and GADL1) that have partially overlapping catalytic properties but different tissue distribution, indicating divergent physiological roles.
 Development of selective enzyme inhibitors targeting these enzymes is important to further dissect their (patho)physiological roles.
 

 

Kissaeläimiltä puuttuu tauriinin synteesikoneista ja siksi ne syövät tauriininsa animaalilähteistä

Kissat  syövät  hiiriä  ehkä  tauriinin puutteen takia.

Leijonat, tiikerit ja muut kissaeläimet Felines,    ovat ihmiselle nälkäisinä  aina vaarallisa, koska ihminen on niille  essentiellin tauriinin lähde.  Niitten entsyymi cysteiinisulfiinihappodekarboksylaasi on vajeinen ja se on  tauriinin synteesiä  (rikkipitoisista aminohapoista metioniinista ja cysteiinistä käsin ) rajoittava entsyymi.  Metioniinin + cysteiinin saanti taas on ihmisellekin essentielliä - niitä tulee ravinnossa saada tietty määränsä, koska keho ei pysty  valmistamaan niitä, korkeintaan muokkaamaan valmiina saatuja  kehon interkonversioissa.


Metabolic bone disease in lion cubs at the London Zoo in 1889 - NCBI


av RW Chesney - ‎2010 - ‎Citerat av 14 - ‎Relaterade artiklar
24 aug. 2010 - Felines have limited amounts of cysteinesulfinic acid decarboxylase, a rate-limiting enzyme in the synthesis of taurine from methionine and cysteine, hence taurine is an essential amino acid in cats. ... Also, taurine is the most abundant free amino acid in goat milk [36].



Eri  tautitiloissa ihmisellä tauriinin synteesi on kompromittoitunutta ja liittyy moniin tauteihin.
Tässä onkin ajateltu jo kehittää tauriinianalogeja, jolloin ylitetään metaboliset esteet ja annetaan suoraan  tauriinia tai sen analogia lääkkeenomaisesti- kts. edellinen  artikkeli ja sitaattilähde.

Tauriinin ja beta-alaniinin kuljettaja SLC6A (3p25.1) , TAUT

https://www.ncbi.nlm.nih.gov/gene/6533
SLC6A  (3p25.1)
Official Symbol
SLC6A6provided by HGNC
Official Full Name
solute carrier family 6 member 6provided by HGNC
Also known as
TAUT
Summary
This gene encodes a multi-pass membrane protein that is a member of a family of sodium and chloride-ion dependent transporters. The encoded protein transports taurine and beta-alanine. There is a pseudogene for this gene on chromosome 21. Alternative splicing results in multiple transcript variants. [provided by RefSeq, May 2013]
Expression Ubiquitous expression in ovary (RPKM 26.5), spleen (RPKM 20.3) and 23 other tissues See more
Preferred Names
sodium- and chloride-dependent taurine transporter
Names
solute carrier family 6 (neurotransmitter transporter, taurine), member 6
 
Conserved Domains (1) summary
cd11510
Location:142683
SLC6sbd_TauT; Na(+)- and Cl(-)-dependent taurine transporter; solute-binding domain TauT is a Na(+)- and Cl(-)-dependent, high-affinity, low-capacity transporter of taurine and beta-alanine. Human TauT is encoded by the SLC6A6 gene. TauT is expressed in brain, retina, liver, kidney, heart, spleen, and pancreas. It may play a part in the supply of taurine to the intestinal epithelium and in the between-meal-capture of taurine. It may also participate in re-absorbing taurine that has been deconjugated from bile acids in the distal lumen. Functional TauT protects kidney cells from nephrotoxicity caused by the chemotherapeutic agent cisplatin; cisplatin down-regulates TauT in a p53-dependent manner. In mice, TauT has been shown to be important for the maintenance of skeletal muscle function and total exercise capacity. TauT-/- mice develop additional clinically important diseases, some of which are characterized by apoptosis, including vision loss, olfactory dysfunction, and chronic liver disease. This subgroup belongs to the solute carrier 6 (SLC6) transporter family.
ORIGIN      
        1 mgdaescllr qqtrevrkkp linyrflraa anaeprgpqa qrtscakrec gaftqrvrer
       61 agrqppaggt rhsraergrr rshprsrtrt tallrssqtk ematkeklqc lkdfhkdilk
      121 pspgkspgtr pedeaegkpp qrekwsskid fvlsvaggfv glgnvwrfpy lcykngggaf
      181 lipyfiflfg sglpvfflei iigqytsegg itcwekicpl fsgigyasvv ivsllnvyyi
      241 vilawatyyl fqsfqkelpw ahcnhswntp hcmedtmrkn ksvwitisst nftspviefw
      301 ernvlslspg idhpgslkwd lalclllvwl vcffciwkgv rstgkvvyft atfpfamllv
      361 llvrgltlpg agagikfyly pditrledpq vwidagtqif fsyaiclgam tslgsynkyk
      421 ynsyrdcmll gclnsgtsfv sgfaifsilg fmaqeqgvdi advaesgpgl afiaypkavt
      481 mmplptfwsi lffimllllg ldsqfveveg qitslvdlyp sflrkgyrre ifiafvcsis
      541 yllgltmvte ggmyvfqlfd yyaasgvcll wvaffecfvi awiyggdnly dgiedmigyr
      601 pgpwmkyswa vitpvlcvgc fifslvkyvp ltynktyvyp nwaiglgwsl alssmlcvpl
      661 vivirlcqte gpflvrvkyl ltprepnrwa veregatpyn srtvmngalv kpthiivetm
      721 m
//


Related articles in PubMed
GeneRIFs: Gene References Into Functions
  Katson vielä  yksityiskohtia "Features" tästä proteiinista: Siinä on jakso jossa on  näitöä prys- tyyppisiä ja myös  runsaasti w aminohappoa.
Natriumjonia  kiinnittää kohdat: 
(G157,V160,L499,D502..S503)
            ##Evidence-Data-END##
FEATURES             Location/Qualifiers
     source          1..721
                     /organism="Homo sapiens"
                     /db_xref="taxon:9606"
                     /chromosome="3"
                     /map="3p25.1"
     Protein         1..721
                     /product="sodium- and chloride-dependent taurine
                     transporter isoform c"
                     /note="sodium- and chloride-dependent taurine transporter;
                     solute carrier family 6 (neurotransmitter transporter,
                     taurine), member 6"
                     /calculated_mol_wt=81208
     Region          142..683
                     /region_name="SLC6sbd_TauT"
                     /note="Na(+)- and Cl(-)-dependent taurine transporter;
                     solute-binding domain; cd11510"
                     /db_xref="CDD:271398"
     Site            order(157,160,499,502..503)
                     /site_type="other"
                     /note="Na binding site 2 [ion binding]"
                     /db_xref="CDD:271398"
     Site            order(158..159,161..164,239,401..402,407,409,503,506..507)
                     /site_type="other"
                     /note="putative substrate binding site 1 [chemical
                     binding]"
                     /db_xref="CDD:271398"
     Site            order(159,164,402,434)
                     /site_type="other"
                     /note="Na binding site 1 [ion binding]"
                     /db_xref="CDD:271398"
     Site            order(166..167,238,242,245,468,472)
                     /site_type="other"
                     /note="putative substrate binding site 2 [chemical
                     binding]"
                     /db_xref="CDD:271398"
     Site            264
                     /site_type="other"
                     /note="putative glycosylation site [posttranslational
                     modification]"
                     /db_xref="CDD:271398"
     Site            280
                     /site_type="other"
                     /note="putative glycosylation site [posttranslational
                     modification]"
                     /db_xref="CDD:271398"
     Site            291
                     /site_type="other"
                     /note="putative glycosylation site [posttranslational
                     modification]"
                     /db_xref="CDD:271398"
     Site            634
                     /site_type="other"
                     /note="putative glycosylation site [posttranslational
                     modification]"
                     /db_xref="CDD:271398"
     CDS             1..721
                     /gene="SLC6A6"
                     /gene_synonym="TAUT"
                     /coded_by="NM_001134367.3:19..2184"
                     /note="isoform c is encoded by transcript variant 2"
                     /db_xref="CCDS:CCDS77704.1"
                     /db_xref="GeneID:6533"
                     /db_xref="HGNC:HGNC:11052"
                     /db_xref="MIM:186854"