onsdag 19 juni 2019

Haku " rhodanese" Thiosulphate sulfurtransferase. Paljon uutisia. 2019

https://www.ncbi.nlm.nih.gov/pubmed/?term=rhodanese
 Search results Items: 1 to 20 of 1062

1.
Bełtowski J.
Methods Mol Biol. 2019;2007:1-8. doi: 10.1007/978-1-4939-9528-8_1.
In addition to nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2S) has recently emerged as the novel gasotransmitter involved in the regulation of the nervous system, cardiovascular functions, inflammatory response, gastrointestinal system, and renal function. H2S is synthesized from L-cysteine and/or L-homocysteine by cystathionine β-synthase, cystathionine γ-lyase, and cysteine aminotransferase together with 3-mercaptopyruvate sulfurtransferase. In addition, H2S is enzymatically metabolized in mitochondria by sulfide:quinone oxidoreductase, persulfide dioxygenase, and sulfite oxidase to thiosulfate, sulfite, and sulfate which enables to regulate its level by factors such as oxygen pressure, mitochondria density, or efficacy of mitochondrial electron transport.
 H2S modifies protein structure and function through the so-called sulfuration or persulfidation, that is, conversion of cysteine thiol (-SH) to persulfide (-SSH) groups. This, as well as other signaling mechanisms, is partially mediated by more oxidized H2S-derived species, polysulfides (H2Sn). In addition, H2S is able to react with reactive oxygen and nitrogen species to form other signaling molecules such as thionitrous acid (HSNO), nitrosopersulfide (SSNO-), and nitroxyl (HNO). All H2S-synthesizing enzymes are expressed in the vascular wall, and H2S has been demonstrated to regulate vascular tone, endothelial barrier permeability, angiogenesis, vascular smooth muscle cell proliferation and apoptosis, and inflammatory reaction. H2S-modifying therapies are promising approach for diseases such as arterial hypertension, diabetic angiopathy, and atherosclerosis.
PMID:
31148102
2.
Hepowit NL, Maupin-Furlow JA.
J Bacteriol. 2019 May 13. pii: JB.00254-19. doi: 10.1128/JB.00254-19. [Epub ahead of print]
PMID:
31085691
3.
Selles B, Moseler A, Rouhier N, Couturier J.
J Exp Bot. 2019 May 4. pii: erz213. doi: 10.1093/jxb/erz213. [Epub ahead of print]
PMID:
31055601
4.
Nagahara N, Tanaka M, Tanaka Y, Ito T.
Antioxidants (Basel). 2019 May 1;8(5). pii: E116. doi: 10.3390/antiox8050116.
5.
Moseler A, Selles B, Rouhier N, Couturier J.
New Phytol. 2019 Apr 29. doi: 10.1111/nph.15870. [Epub ahead of print]
PMID:
31032955
6.
Sharma M, Akhter Y, Chatterjee S.
World J Microbiol Biotechnol. 2019 Apr 22;35(5):70. doi: 10.1007/s11274-019-2643-8. Review.
PMID:
31011828
7.
Li H, Liu H, Chen Z, Zhao R, Wang Q, Ran M, Xia Y, Hu X, Liu J, Xian M, Xun L.
Redox Biol. 2019 Jun;24:101179. doi: 10.1016/j.redox.2019.101179. Epub 2019 Mar 26.
8.
Suman SG, Gretarsdottir JM.
Met Ions Life Sci. 2019 Jan 14;19. pii: /books/9783110527872/9783110527872-020/9783110527872-020.xml. doi: 10.1515/9783110527872-020.
PMID:
30855115
9.
Tang T, Sun H, Li Y, Chen P, Liu F.
Mol Immunol. 2019 Mar;107:115-122. doi: 10.1016/j.molimm.2019.01.016. Epub 2019 Feb 1.
PMID:
30716562
10.
Wells M, McGarry J, Gaye MM, Basu P, Oremland RS, Stolz JF.
J Bacteriol. 2019 Mar 13;201(7). pii: e00614-18. doi: 10.1128/JB.00614-18. Print 2019 Apr 1.
PMID:
30642986
11.
Fránová J, Koloniuk I, Lenz O, Sakalieva D.
Folia Microbiol (Praha). 2019 May;64(3):373-382. doi: 10.1007/s12223-018-0660-x. Epub 2018 Oct 30.
PMID:
30377990
12.
Florentino AP, Pereira IAC, Boeren S, van den Born M, Stams AJM, Sánchez-Andrea I.
Environ Microbiol. 2019 Jan;21(1):209-225. doi: 10.1111/1462-2920.14442. Epub 2018 Nov 15.
13.
Chen Z, Zhang X, Li H, Liu H, Xia Y, Xun L.
Appl Environ Microbiol. 2018 Oct 30;84(22). pii: e01241-18. doi: 10.1128/AEM.01241-18. Print 2018 Nov 15.
14.
Lee J, Rockwood G, Logue B, Manandhar E, Petrikovics I, Han C, Bebarta V, Mahon SB, Burney T, Brenner M.
J Med Toxicol. 2018 Dec;14(4):295-305. doi: 10.1007/s13181-018-0680-6. Epub 2018 Aug 9. Erratum in: J Med Toxicol. 2019 Jan 3;:.
PMID:
30094773
15.
Kawano Y, Suzuki K, Ohtsu I.
Appl Microbiol Biotechnol. 2018 Oct;102(19):8203-8211. doi: 10.1007/s00253-018-9246-4. Epub 2018 Jul 26. Review.
PMID:
30046857
16.
Steiner AM, Busching C, Vogel H, Wittstock U.
Sci Rep. 2018 Jul 17;8(1):10819. doi: 10.1038/s41598-018-29148-5.
17.
Zhu L, Yang Z, Yao R, Xu L, Chen H, Gu X, Wu T, Yang X.
mSphere. 2018 Jun 13;3(3). pii: e00229-18. doi: 10.1128/mSphere.00229-18. Print 2018 Jun 27.
18.
Jaswal V, Palanivelu J, C R.
Biochem Biophys Rep. 2018 May 3;14:125-132. doi: 10.1016/j.bbrep.2018.04.008. eCollection 2018 Jul. Review.
19.
Zagrobelny M, de Castro ÉCP, Møller BL, Bak S.
Insects. 2018 May 3;9(2). pii: E51. doi: 10.3390/insects9020051. Review.
20.
Nucleic Acids Res. 2018 Jun 1;46(10):5171-5181. doi: 10.1093/nar/gky312.
2018 Jun 1;46(10):5171-5181. doi: 10.1093/nar/gky312.
Eukaryotic ubiquitin-like proteins (UBLs) have evolved from prokaryotic sulfur-carrier proteins (SCPs). Ubiquitin related modifier 1 (Urm1) shares biochemical and structural features of UBLs and SCPs and is essential for 2-thiolation of cytoplasmic tRNA.

 This chemical modification of wobble uridine is highly conserved amongst species and is achieved via Urm1 thiocarboxylation by the non-canonical ubiquitin activating 4 enzyme (Uba4), which contains an E1- and a Rhodanese (RHD) domain. While the RHD catalyzes the last step in Urm1-thiocarboxylate formation, the previous steps in Urm1 activation and the interplay between the two domains have remained elusive. To define the underlying mechanism, we established an Urm1 in vitro thiocarboxylation assay, which combined with structure-function and chemical profiling analyses revealed a critical thioester linkage between Urm1 and Uba4 residue Cys225. This linkage is indispensable for the Urm1 intramolecular transfer between the two domains of Uba4 and it is thus, essential for tRNA thiolation in vivo
. These findings contribute to a deeper understanding of UBL evolution.
PMID:
29718331
PMCID:
PMC6007339
DOI:
10.1093/nar/gky312



Inga kommentarer: